3. Appendix Euler Products

Theorem 3.28 If f is multiplicative and $D_{f}(s)$ is absolutely convergent at $s_{0} \in \mathbb{C}$ then for all $s: \operatorname{Re} s>\operatorname{Re} s_{0}$ the Euler Product

$$
\prod_{p}\left(1+\frac{f(p)}{p^{s}}+\frac{f\left(p^{2}\right)}{p^{2 s}}+\frac{f\left(p^{3}\right)}{p^{3 s}}+\ldots\right)
$$

converges to $D_{f}(s)$.
Proof Let $N>1$ and $\mathcal{N}=\{n: p \mid n \Rightarrow p \leq N\}$. By unique factorisation and because f is multiplicative we have

$$
\sum_{n \in \mathcal{N}} \frac{f(n)}{n^{s}}=\prod_{p \leq N}\left(1+\frac{f(p)}{p^{s}}+\frac{f\left(p^{2}\right)}{p^{2 s}}+\frac{f\left(p^{3}\right)}{p^{3 s}}+\ldots\right)
$$

Thus, for $\operatorname{Re} s>\operatorname{Re} s_{0}=\sigma_{0}$, say,

$$
\begin{aligned}
\mid D_{f}(s) & \left.-\prod_{p \leq N}\left(1+\frac{f(p)}{p^{s}}+\frac{f\left(p^{2}\right)}{p^{2 s}}+\frac{f\left(p^{3}\right)}{p^{3 s}}+\ldots\right) \right\rvert\, \\
& =\left|\sum_{n=1}^{\infty} \frac{f(n)}{n^{s}}-\sum_{n \in \mathcal{N}} \frac{f(n)}{n^{s}}\right|=\left|\sum_{n \notin \mathcal{N}} \frac{f(n)}{n^{s}}\right| \\
& \leq \sum_{n \notin \mathcal{N}}\left|\frac{f(n)}{n^{s}}\right| \leq \sum_{n \notin \mathcal{N}} \frac{|f(n)|}{n^{\sigma_{0}}} .
\end{aligned}
$$

Since we have already seen that $n \leq N \Rightarrow n \in \mathcal{N}$ the contrapositive is $n \notin \mathcal{N} \Rightarrow n>N$. Hence

$$
\begin{aligned}
\left|D_{f}(s)-\prod_{p \leq N}\left(1+\frac{f(p)}{p^{s}}+\frac{f\left(p^{2}\right)}{p^{2 s}}+\frac{f\left(p^{3}\right)}{p^{3 s}}+\ldots\right)\right| & \leq \sum_{n \notin \mathcal{N}} \frac{|f(n)|}{n^{\sigma_{0}}} \\
& \leq \sum_{n \geq N+1} \frac{|f(n)|}{n^{\sigma_{0}}}
\end{aligned}
$$

We are told that $D_{f}(s)$ converges absolutely at s_{0}, therefore

$$
\sum_{n=1}^{\infty}\left|\frac{f(n)}{n^{s_{0}}}\right|=\sum_{n=1}^{\infty} \frac{|f(n)|}{n^{\sigma_{0}}}
$$

converges. In particular the tail of this series,

$$
\sum_{n \geq N+1} \frac{|f(n)|}{n^{\sigma_{0}}} \rightarrow 0
$$

as $N \rightarrow \infty$. Hence

$$
\prod_{p \leq N}\left(1+\frac{f(p)}{p^{s}}+\frac{f\left(p^{2}\right)}{p^{2 s}}+\frac{f\left(p^{3}\right)}{p^{3 s}}+\ldots\right)
$$

converges to $D_{f}(s)$ as $N \rightarrow \infty$.

