3. Appendix Euler Products

Theorem 3.28 If f is multiplicative and $D_f(s)$ is absolutely convergent at $s_0 \in \mathbb{C}$ then for all $s : \operatorname{Re} s > \operatorname{Re} s_0$ the Euler Product

$$\prod_{p} \left(1 + \frac{f(p)}{p^s} + \frac{f(p^2)}{p^{2s}} + \frac{f(p^3)}{p^{3s}} + \dots \right)$$

converges to $D_{f}(s)$.

Proof Let N > 1 and $\mathcal{N} = \{n : p | n \Rightarrow p \leq N\}$. By unique factorisation and because f is multiplicative we have

$$\sum_{n \in \mathcal{N}} \frac{f(n)}{n^s} = \prod_{p \le N} \left(1 + \frac{f(p)}{p^s} + \frac{f(p^2)}{p^{2s}} + \frac{f(p^3)}{p^{3s}} + \dots \right)$$

Thus, for $\operatorname{Re} s > \operatorname{Re} s_0 = \sigma_0$, say,

$$D_f(s) - \prod_{p \le N} \left(1 + \frac{f(p)}{p^s} + \frac{f(p^2)}{p^{2s}} + \frac{f(p^3)}{p^{3s}} + \dots \right)$$
$$= \left| \sum_{n=1}^{\infty} \frac{f(n)}{n^s} - \sum_{n \in \mathcal{N}} \frac{f(n)}{n^s} \right| = \left| \sum_{n \notin \mathcal{N}} \frac{f(n)}{n^s} \right|$$
$$\leq \sum_{n \notin \mathcal{N}} \left| \frac{f(n)}{n^s} \right| \le \sum_{n \notin \mathcal{N}} \frac{|f(n)|}{n^{\sigma_0}}.$$

Since we have already seen that $n \leq N \Rightarrow n \in \mathcal{N}$ the contrapositive is $n \notin \mathcal{N} \Rightarrow n > N$. Hence

$$\left| D_f(s) - \prod_{p \le N} \left(1 + \frac{f(p)}{p^s} + \frac{f(p^2)}{p^{2s}} + \frac{f(p^3)}{p^{3s}} + \dots \right) \right| \le \sum_{n \notin \mathcal{N}} \frac{|f(n)|}{n^{\sigma_0}} \le \sum_{n \ge N+1} \frac{|f(n)|}{n^{\sigma_0}}.$$

We are told that $D_{f}(s)$ converges absolutely at s_{0} , therefore

$$\sum_{n=1}^{\infty} \left| \frac{f(n)}{n^{s_0}} \right| = \sum_{n=1}^{\infty} \frac{|f(n)|}{n^{\sigma_0}}$$

converges. In particular the tail of this series,

$$\sum_{n \ge N+1} \frac{|f(n)|}{n^{\sigma_0}} \to 0$$

as $N \to \infty$. Hence

$$\prod_{p \le N} \left(1 + \frac{f(p)}{p^s} + \frac{f(p^2)}{p^{2s}} + \frac{f(p^3)}{p^{3s}} + \dots \right)$$

converges to $D_f(s)$ as $N \to \infty$.